Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
medRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585854

ABSTRACT

Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.

2.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873117

ABSTRACT

Transcription Factors (TFs) influence gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Because genomic localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF binding sites can disrupt TF-DNA associations and affect gene regulation. To identify variants that impact TF binding in human brain tissues, we quantified allele bias for 93 TFs analyzed with ChIP-seq experiments of multiple structural brain regions from two donors. Using graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signal between alleles at heterozygous variants within each tissue sample from each donor. Comparison of results from different brain regions within donors and the same regions between donors provided measures of allele bias reproducibility. We identified thousands of DNA variants that show reproducible bias in ChIP-seq for at least one TF. We found that alleles that are rarer in the general population were more likely than common alleles to exhibit large biases, and more frequently led to reduced TF binding. Combining ChIP-seq with RNA-seq, we identified TF-allele interaction biases with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data, 3,309 of which were found in neural contexts. Our results provide insights into the effects of both common and rare variation on gene regulation in the brain. These findings can facilitate mechanistic understanding of cis-regulatory variation associated with biological traits, including disease.

3.
J Pers Med ; 13(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37511639

ABSTRACT

BACKGROUND: It is critical to understand the wide-ranging clinical and non-clinical effects of genome sequencing (GS) for parents in the NICU context. We assessed parents' experiences with GS as a first-line diagnostic tool for infants with suspected genetic conditions in the NICU. METHODS: Parents of newborns (N = 62) suspected of having a genetic condition were recruited across five hospitals in the southeast United States as part of the SouthSeq study. Semi-structured interviews (N = 78) were conducted after parents received their child's sequencing result (positive, negative, or variants of unknown significance). Thematic analysis was performed on all interviews. RESULTS: Key themes included that (1) GS in infancy is important for reproductive decision making, preparing for the child's future care, ending the diagnostic odyssey, and sharing results with care providers; (2) the timing of disclosure was acceptable for most parents, although many reported the NICU environment was overwhelming; and (3) parents deny that receiving GS results during infancy exacerbated parent-infant bonding, and reported variable impact on their feelings of guilt. CONCLUSION: Parents reported that GS during the neonatal period was useful because it provided a "backbone" for their child's care. Parents did not consistently endorse negative impacts like interference with parent-infant bonding.

4.
Article in English | MEDLINE | ID: mdl-37308299

ABSTRACT

We collected and analyzed genomic sequencing data from individuals with clinician-diagnosed early-onset or atypical dementia. Thirty-two patients were previously described, with 68 newly described in this report. Of those 68, 62 patients self-reported white, non-Hispanic ethnicity and 6 reported as African-American, non-Hispanic. Fifty-three percent of patients had a returnable variant. Five patients harbored a pathogenic variant as defined by the American College of Medical Genetics criteria for pathogenicity. A polygenic risk score (PRS) was calculated for Alzheimer's patients in the total cohort and compared to the scores of a late-onset Alzheimer's cohort and a control set. Patients with early-onset Alzheimer's had higher non-APOE PRSs than patients with late-onset Alzheimer's, supporting the conclusion that both rare and common genetic variation associate with early-onset neurodegenerative disease risk.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Risk Factors
5.
Genet Med ; 25(8): 100884, 2023 08.
Article in English | MEDLINE | ID: mdl-37161864

ABSTRACT

PURPOSE: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS: We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS: Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION: With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.


Subject(s)
Epilepsy , Animals , Mice , Humans , Exons/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Phenotype , Base Sequence , Genomics
6.
medRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798301

ABSTRACT

We collected and analyzed genomic sequencing data from individuals with clinician- diagnosed early-onset or atypical dementia. Thirty-two patients were previously described, with sixty-eight newly described in this report. Of those sixty-eight, sixty-two patients reported Caucasian, non-Hispanic ethnicity and six reported as African American, non-Hispanic. Fifty-three percent of patients had a returnable variant. Five patients harbored a pathogenic variant as defined by the American College of Medical Genetics criteria for pathogenicity. A polygenic risk score was calculated for Alzheimer's patients in the total cohort and compared to the scores of a late-onset Alzheimer's cohort and a control set. Patients with early-onset Alzheimer's had higher non- APOE polygenic risk scores than patients with late onset Alzheimer's, supporting the conclusion that both rare and common genetic variation associate with early-onset neurodegenerative disease risk.

7.
HGG Adv ; 3(3): 100120, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35707062

ABSTRACT

Integrating data across heterogeneous research environments is a key challenge in multi-site, collaborative research projects. While it is important to allow for natural variation in data collection protocols across research sites, it is also important to achieve interoperability between datasets in order to reap the full benefits of collaborative work. However, there are few standards to guide the data coordination process from project conception to completion. In this paper, we describe the experiences of the Clinical Sequence Evidence-Generating Research (CSER) consortium Data Coordinating Center (DCC), which coordinated harmonized survey and genomic sequencing data from seven clinical research sites from 2020 to 2022. Using input from multiple consortium working groups and from CSER leadership, we first identify 14 lessons learned from CSER in the categories of communication, harmonization, informatics, compliance, and analytics. We then distill these lessons learned into 11 recommendations for future research consortia in the areas of planning, communication, informatics, and analytics. We recommend that planning and budgeting for data coordination activities occur as early as possible during consortium conceptualization and development to minimize downstream complications. We also find that clear, reciprocal, and continuous communication between consortium stakeholders and the DCC is equally important to maintaining a secure and centralized informatics ecosystem for pooling data. Finally, we discuss the importance of actively interrogating current approaches to data governance, particularly for research studies that straddle the research-clinical divide.

8.
Inquiry ; 59: 469580221086921, 2022.
Article in English | MEDLINE | ID: mdl-35420504

ABSTRACT

Care for many progressive chronic diseases continues to improve, allowing patients to survive and thrive for longer periods of time1. People living with such conditions may now find themselves able to achieve long-term goals in education and career development2. Many people now occupy the dual roles of scientist and patient3. This commentary article synthesizes experiences of scientists and advocates with the progressive genetic disease cystic fibrosis (CF) who collaborated on a career development session for the Cystic Fibrosis Foundation's inaugural ResearchCon event in 2019. It explores how such collaborations affirm and transform individual perspectives on patient science and its importance in broader scientific research agenda setting. We first share our own individual insights about the experience and impact of the ResearchCon panel session before progressing to discussion and future directions centering the shared insights from one another's reflections.


Subject(s)
Cystic Fibrosis , Physicians , Chronic Disease , Cystic Fibrosis/genetics , Humans
9.
Genet Med ; 24(4): 851-861, 2022 04.
Article in English | MEDLINE | ID: mdl-34930662

ABSTRACT

PURPOSE: SouthSeq is a translational research study that undertook genome sequencing (GS) for infants with symptoms suggestive of a genetic disorder. Recruitment targeted racial/ethnic minorities and rural, medically underserved areas in the Southeastern United States, which are historically underrepresented in genomic medicine research. METHODS: GS and analysis were performed for 367 infants to detect disease-causal variation concurrent with standard of care evaluation and testing. RESULTS: Definitive diagnostic (DD) or likely diagnostic (LD) genetic findings were identified in 30% of infants, and 14% of infants harbored an uncertain result. Only 43% of DD/LD findings were identified via concurrent clinical genetic testing, suggesting that GS testing is better for obtaining early genetic diagnosis. We also identified phenotypes that correlate with the likelihood of receiving a DD/LD finding, such as craniofacial, ophthalmologic, auditory, skin, and hair abnormalities. We did not observe any differences in diagnostic rates between racial/ethnic groups. CONCLUSION: We describe one of the largest-to-date GS cohorts of ill infants, enriched for African American and rural patients. Our results show the utility of GS because it provides early-in-life detection of clinically relevant genetic variations not detected by current clinical genetic testing, particularly for infants exhibiting certain phenotypic features.


Subject(s)
Diagnostic Tests, Routine , Genetic Testing , Base Sequence , Chromosome Mapping , Genetic Testing/methods , Genomics , Humans
10.
HGG Adv ; 2(2)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33937879

ABSTRACT

Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy). We used CCS on six proband-parent trios with NDDs that were unexplained despite extensive testing, including genome sequencing with short reads. We identified variants and created de novo assemblies in each trio, with global metrics indicating these datasets are more accurate and comprehensive than those provided by short-read data. In one proband, we identified a likely pathogenic (LP), de novo L1-mediated insertion in CDKL5 that results in duplication of exon 3, leading to a frameshift. In a second proband, we identified multiple large de novo structural variants, including insertion-translocations affecting DGKB and MLLT3, which we show disrupt MLLT3 transcript levels. We consider this extensive structural variation likely pathogenic. The breadth and quality of variant detection, coupled to finding variants of clinical and research interest in two of six probands with unexplained NDDs, support the hypothesis that long-read genome sequencing can substantially improve rare disease genetic discovery rates.

11.
AJOB Empir Bioeth ; 12(3): 179-189, 2021.
Article in English | MEDLINE | ID: mdl-33843487

ABSTRACT

Background: The desire of parents to obtain a genetic diagnosis for their child with intellectual disability and associated symptoms has long been framed as a diagnostic odyssey, an arduous and sometimes perilous journey focused on the goal of identifying a cause for the child's condition.Methods: Semi-structured interviews (N = 60) were conducted with parents of children (N = 59, aged 2-24 years) with intellectual disability and/or developmental delay (IDD) who underwent genome sequencing at a single pediatric multispecialty clinic. Interviews were conducted after parents received their child's sequencing result (positive findings, negative findings, or variants of unknown significance). Thematic analysis was performed on all interviews.Results: Parents reported that obtaining a genetic diagnosis was one important step in their overall goal of helping their child live their best life possible life. They intended to use the result as a tool to help their child by seeking the correct school placement and obtaining benefits and therapeutic services.Conclusions: For the parents of children with IDD, the search for a genetic diagnosis is best conceptualized as a part of parents' ongoing efforts to leverage various diagnoses to obtain educational and therapeutic services for their children. Cleaving parents' search for a genetic diagnosis from these broader efforts obscures the value that some parents place on a sequencing result in finding and tailoring therapies and services beyond the clinic. Interviews with parents reveal, therefore, that genomic sequencing is best understood as one important stage of an ongoing therapeutic odyssey that largely takes place outside the clinic. Findings suggest the need to expand translational research efforts to contextualize a genetic diagnosis within parents' broader efforts to obtain educational and therapeutic services outside clinical contexts.


Subject(s)
Motivation , Parents , Base Sequence , Child , Family , Genomics , Humans
12.
Genet Med ; 23(2): 280-288, 2021 02.
Article in English | MEDLINE | ID: mdl-32989269

ABSTRACT

PURPOSE: To evaluate the effectiveness and specificity of population-based genomic screening in Alabama. METHODS: The Alabama Genomic Health Initiative (AGHI) has enrolled and evaluated 5369 participants for the presence of pathogenic/likely pathogenic (P/LP) variants using the Illumina Global Screening Array (GSA), with validation of all P/LP variants via Sanger sequencing in a CLIA-certified laboratory before return of results. RESULTS: Among 131 variants identified by the GSA that were evaluated by Sanger sequencing, 67 (51%) were false positives (FP). For 39 of the 67 FP variants, a benign/likely benign variant was present at or near the targeted P/LP variant. Variants detected within African American individuals were significantly enriched for FPs, likely due to a higher rate of nontargeted alternative alleles close to array-targeted P/LP variants. CONCLUSION: In AGHI, we have implemented an array-based process to screen for highly penetrant genetic variants in actionable disease genes. We demonstrate the need for clinical validation of array-identified variants in direct-to-consumer or population testing, especially for diverse populations.


Subject(s)
Genetic Testing , Genomics , Alabama , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans
13.
Hum Genet ; 140(3): 423-439, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32734384

ABSTRACT

Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Genomics , Transcriptome , Amino Acid Substitution , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Genetic Heterogeneity , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mutation , Polymorphism, Single Nucleotide , Quantitative Trait Loci
14.
Article in English | MEDLINE | ID: mdl-31836585

ABSTRACT

We assessed the results of genome sequencing for early-onset dementia. Participants were selected from a memory disorders clinic. Genome sequencing was performed along with C9orf72 repeat expansion testing. All returned sequencing results were Sanger-validated. Prior clinical diagnoses included Alzheimer's disease, frontotemporal dementia, and unspecified dementia. The mean age of onset was 54 (41-76). Fifty percent of patients had a strong family history, 37.5% had some, and 12.5% had no known family history. Nine of 32 patients (28%) had a variant defined as pathogenic or likely pathogenic (P/LP) by American College of Medical Genetics and Genomics standards, including variants in APP, C9orf72, CSF1R, and MAPT Nine patients (including three with P/LP variants) harbored established risk alleles with moderate penetrance (odds ratios of ∼2-5) in ABCA7, AKAP9, GBA, PLD3, SORL1, and TREM2 All six patients harboring these moderate penetrance variants but not P/LP variants also had one or two APOE ε4 alleles. One patient had two APOE ε4 alleles with no other established contributors. In total, 16 patients (50%) harbored one or more genetic variants likely to explain symptoms. We identified variants of uncertain significance (VUSs) in ABI3, ADAM10, ARSA, GRID2IP, MME, NOTCH3, PLCD1, PSEN1, TM2D3, TNK1, TTC3, and VPS13C, also often along with other variants. In summary, genome sequencing for early-onset dementia frequently identified multiple established or possible contributory alleles. These observations add support for an oligogenic model for early-onset dementia.


Subject(s)
Alzheimer Disease/genetics , Dementia/genetics , Aged , Alleles , Apolipoprotein E4/genetics , Base Sequence , C9orf72 Protein/genetics , Chromosome Mapping , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Odds Ratio , Penetrance , Risk Factors , Whole Genome Sequencing/methods
15.
Am J Hum Genet ; 104(4): 701-708, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879638

ABSTRACT

Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise in many rare monogenic disorders. Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-media platforms that facilitate data sharing among sequencing labs can help to address this challenge. Through one such tool, GeneMatcher, we identified nine DD- and/or ID-affected probands with a rare, heterozygous variant in the gene encoding the serine/threonine-protein kinase BRSK2. All probands have a speech delay, and most present with intellectual disability, motor delay, behavioral issues, and autism. Six of the nine variants are predicted to result in loss of function, and computational modeling predicts that the remaining three missense variants are damaging to BRSK2 structure and function. All nine variants are absent from large variant databases, and BRSK2 is, in general, relatively intolerant to protein-altering variation among humans. In all six probands for whom parents were available, the mutations were found to have arisen de novo. Five of these de novo variants were from cohorts with at least 400 sequenced probands; collectively, the cohorts span 3,429 probands, and the observed rate of de novo variation in these cohorts is significantly higher than the estimated background-mutation rate (p = 2.46 × 10-6). We also find that exome sequencing provides lower coverage and appears less sensitive to rare variation in BRSK2 than does genome sequencing; this fact most likely reduces BRSK2's visibility in many clinical and research sequencing efforts. Altogether, our results implicate damaging variation in BRSK2 as a source of neurodevelopmental disease.


Subject(s)
Developmental Disabilities/genetics , Gene Deletion , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Protein Serine-Threonine Kinases/genetics , Adolescent , Autistic Disorder/genetics , Child , Child Behavior Disorders/genetics , Child, Preschool , Exome , Female , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Male , Motor Skills Disorders/genetics , Mutation , Phenotype , Exome Sequencing , Young Adult
16.
Genet Med ; 20(12): 1635-1643, 2018 12.
Article in English | MEDLINE | ID: mdl-29790872

ABSTRACT

PURPOSE: Clinically relevant secondary variants were identified in parents enrolled with a child with developmental delay and intellectual disability. METHODS: Exome/genome sequencing and analysis of 789 "unaffected" parents was performed. RESULTS: Pathogenic/likely pathogenic variants were identified in 21 genes within 25 individuals (3.2%), with 11 (1.4%) participants harboring variation in a gene defined as clinically actionable by the American College of Medical Genetics and Genomics. These 25 individuals self-reported either relevant clinical diagnoses (5); relevant family history or symptoms (13); or no relevant family history, symptoms, or clinical diagnoses (7). A limited carrier screen was performed yielding 15 variants in 48 (6.1%) parents. Parents were also analyzed as mate pairs (n = 365) to identify cases in which both parents were carriers for the same recessive disease, yielding three such cases (0.8%), two of which had children with the relevant recessive disease. Four participants had two findings (one carrier and one noncarrier variant). In total, 71 of the 789 enrolled parents (9.0%) received secondary findings. CONCLUSION: We provide an overview of the rates and types of clinically relevant secondary findings, which may be useful in the design and implementation of research and clinical sequencing efforts to identify such findings.


Subject(s)
Exome Sequencing , Exome/genetics , Genetic Diseases, Inborn/genetics , Genetic Testing , Adult , Chromosome Mapping , Female , Genetic Carrier Screening , Genetic Diseases, Inborn/classification , Genetic Diseases, Inborn/physiopathology , Genetic Variation , Genome, Human/genetics , Humans , Male , Middle Aged , Mutation , Parents , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...